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Abstract—The finite element or finite difference techniques are
well known for the solution of Maxwell’s equation in differential
form. But terminating the mesh accurately at a finite distance
from the body in case of an open problem is a major challenge.
Previously, the method has been applied for only electrostatic
problems. This hybrid method is applied for TM scattering
problems and results are documented in this paper. This new
approach, as in the electrostatic case, allows for the terminating
surface to encapsulate the body very tightly. As before, the finite
element technique is used for open region problems whereas the
integral equation solution approach using Green’s function is
applied to enforce the radiation condition. At each iteration cycle,
the induced currents on the conducting cylinder are evaluated
and their scattered fields at the terminating surface is calculated.
Using this method for TM cases, the computational efficiency of
the finite element method can be increased. It can be generalized
for the case of inhomogeneous and nonlinear media. In this paper
numerical results are presented for the solution of Helmholtz’s
equation to illustrate the accuracy of the technique.

1. INTRODUCTION

HE FINITE element method has been used extensively

to solve Maxwell’s equation in differential form. As it
is mentioned in various literature [1], [2], the computational
domain for an open region problem has to be reduced for
an efficient solution. Therefore, terminating the finite element
mesh close to the object boundary is necessary to reduce the
number of unknowns (nodes) in the finite element matrix.
But one has to be careful about abrupt termination of the
mesh, which can introduce errors in the solution. In this paper,
the new method keeps the computational domain very small,
hence, there are fewer unknowns, and it applies appropriate
boundary conditions to the mesh boundary, so that abrupt
termination does not have any undesirable effects on the
solution.

The MEI technique [3], [6] has been found to give accept-
able results, but calculation of the matrix elements could be
very demanding. The results presented in [4] are interesting,
but convergence is not achieved for certain problems. If the
assumed metrons do not represent the charge distribution on
the body of interest, the boundary condition is violated. So
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the solution of partial differential equation may or may not
be acceptable because of the approximation introduced by the
inexact boundary condition.

This method is applied to electrostatic problems and yielded
acceptable results. The purpose of the paper is to demonstrate
that the method also works for dynamic problems and to
investigate the behavior of it. A simple problem of scattering
from a perfectly conducting cylinder, residing in a vacuum,
is chosen for that purpose. The cylinder is assumed to be
illuminated by a time—harmonic uniform plane wave of angular
frequency w, whose electric field is parallel to the cylinder
axis. This incident field produces axially directed induced
surface currents on the conductor, an axially directed scattered
electric field from that induced current, while the magnetic
field is purely transverse to the cylinder axis.

In this paper, the finite element technique in conjunc-
tion with the integral equation approach is used to solve
Helmholtz’s equation for two-dimensional TM scattering prob-
lems involving open regions, i.e.,

V2E, + K’E,

O?E, (z,y) O*E,(z,v) 2
=— + o +k*E, =0,
z,y€R (1)

where F, is the axial component of the electric field, which
does not depend on the axial coordinate (z), for the TM case.
The free space wavenumber k is given by

k= wy/eottp.

Triangular finite elements are used to approximate an arbi-
trary boundary accurately. In this approach elements do not
extend to infinity, but are limited only to layers from the
structure. As it was evident in the electrostatic case, this
method encloses the conducting body very tightly without
sacrificing the advantages of the finite element methods such
as sparsity of the matrix. On one hand, it allows treating
problems with infinite domains by using the tools of the
integral equation method and on the other hand, it exploits
the capabilities of FEM to handle various “irregularities” in
the enclosed domain, such as variable coefficients, etc. The
artificial outside perimeter of the domain may be chosen to
have any shape desired so as to enclose these irregularities
efficiently and thus to reduce the size of the computational
domain.

Section IT describes the theory and the exact procedure
of the method. Numerical results of various structures are
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Fig. 1. Finite element mesh for elliptic cylinder.

outlined in Section IIL. A brief conclusion is given in Section
Iv.

II. THEORY

In this analysis we assumed a monochromatic plane wave,
incident on the conductor, whose electric field is given as
(Fig. 1)

E, = Eyexp {jk(zcos ¢+ ysing)}2 (2)

where 2 is the unit vector along z direction. Equation (1) is
satisfied by the incident electric field E,, the scattered electric
field (E,) produced by the currents induced on the conductor,
and the total electric field given as

E=E.+E,. 3)

The scattered field E is given by
T, = ~juA = ~jup § TG Y @)
c

where A is the magnetic vector potential, J, is the induced
surface current density which is given by

75 = J.sz;2

dr’ is the element of the contour C' bounding the conductor
cross section, and the Green’s function for this problem is
given by

1
T4
where Héz) is the Handel’s function of the second kind and
order zero. Since J,, is independent of z, there are no charges
associated with this current, hence, the electric scalar potential

Glr, 1) HP (kjr — ') (5)

& is zero everywhere. The transverse components of the
electric and magnetic fields are

H; = 2 x ViE, N

Jwiko

respectively. # and § are the unit vectors along x and y
direction. The transverse nabla operator is given by

= d ad
Vi=E—+9

5z Yoy (&)

The transverse components of electric fields are [from (6)]

E,=E,=0 ©)
and from (7) and (8) we get
= ——25 (10)
Jwpo Oy
1 OF,
Y= Juns 9z (n

Since the cylinder is perfectly conducting, the boundary
condition requires that the tangential components of the total
electric field be zero on the conductor. Hence,

Etar = (12)

on the conductor surface. We can express the surface current
density on the conductor in terms of a tangential magnetic
field just outside the conductor. Hence, (12) leads us to

—= =
Jo=nxH,
where # is the unit normal on the conductor surface.

Now the open region surrounding the body is subdivided
into nonoverlapping finite elements. Here, the solution region

13)
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Fig. 2. Real part of the induced current on the elliptic conductor; outer
boundary 0.2 away.

does not extend to infinity or to a large distance from the
body, but extends only two layers from the structure. The finite
elements are chosen to be triangular because structures with an
arbitrary boundary can be simulated very efficiently. To find
the electric field £, for the two-dimensional solution region,
we seek an approximation for the electric field £ within an
element e and then interrelate the fields in various elements
such that the electric field is continuous across interelement
boundaries [5]. Using a polynomial approximation of an
electric field over an element, the solution for the whole region
is
N
E.(z,y) =) Fi(z,y) (14)
e=1

where N is the number of triangular elements into which
the solution region is divided. The most common form of
approximation for £ within an element is a linear polynomial,
and we carried our analysis based on that. Using the same
procedure as described in [2], the functional I(®.), which is
the energy per unit length associated with the element e, is
given by

I(®,) = %/{|v<1>e|2 — K292} ds (15)
where ® is F, in our problem. Now we know
3
Vo (z,y) =Y 2iVal (16)
i=1

where ®J are the values of the vertices of the element e and
o2’s which are described in [2]. Now substituting (16) into
(15) and the expression for ®. over an element we get

3 3

1 7 7 2qmj ]
I(®,) = 522@{0; — k2T @7 17)

1=1 j=1

where C¥ is as defined in [2] and T is given as

T9 = /aiaj ds. (18)
Now (17) can be written in matrix form as
1 k2

1(2.) = j(@J(C[0] - (@ TI@]  (19)
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Fig. 3. Imaginary part of the induced current on the elliptic conductor.

where ¢ denotes the transpose of the matrix and
i=j

) A
w {1
N 1_2‘5) ? 7é J
where A, is the area of the triangular element e, Now

assembling all such elements in the solution region, the total
energy of the assemblage is given by

(20)

N 1 k2
1(®) =) I1(®.) = s[@I'Cle] - [ [T[e]. @D

The matrices [C] and [T are the assemblage of individual
coefficient matrices [C,] and [T,], respectively. The column
matrix [®] represents E, at corresponding nodes.

Equation (19) can be split into two parts for two types of
nodes. The first set of nodes are called free nodes on which
the electric field needs to be solved for, and the second set
are called fixed nodes on which E,s are known. If all the
free nodes are numbered first and the fixed nodes last, we can
rewrite (19) as

1(@) = (2 QP]{[gff Cfp]

»r Cpp
T T 0]
_k2|: ff fp:l}[ f} (22)
Ty Tpp @,
where subscripts f and p refer to free and fixed nodes,
respectively. Now to find the minimum of the functional I(®)
we set
oI(®)
— =0. 23
0P 23)

In general, it yields

L0
{ICsr Ol = [Ty Tfp]}[q)’; ] =0. (24
This equation can be written as
{[Crs) = K2[Tys}@4] = {K[Trp] = [Crp]}@p]  25)

where [®] is our unknown vector.

In this analysis as before [2] the nodes, which are residing on
the terminating surface as well as on the conductor boundary,
are called fixed nodes. The electric fields on these fixed nodes,
residing on the conductor, are known from the boundary
condition on the conducting surface, i.e., (12). The electric
fields of the nodes, residing on the terminating surface are
given by (4) if we know the induced current on the conductor.
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Fig. 6. Imaginary part of the induced current on the square conductor.

Fig. 5. Real part of the induced current on the square conductor; outer
boundary 0.267\ away.

The nodes other than fixed nodes are called free nodes for
which electric fields will be determined by (25). Suppose we
know the field sources within the mesh. These sources are
the induced current on the conductor surfaces. These sources
produce field in free space, and the scattered field at the
terminating surface can be evaluated using (4), given as

. R
Escat = —]W/JOZ ‘/All JAL @H(g )(k[T - T/l) dl, (26)

here Ja;, is the current distribution over a particular segment
on the conductor surface, i.e., Al; (Fig. 1), and dl’ is the
element of that segment.

Equation (1) can be solved for both the scattered field
(E,) as well as for the total field (F) If we use the total
field criteria, the tangential electric field on the conductor
is zero, but in the scattered field formulation it is —FE,;. At

the beginning of iteration the electric field at the terminating
surface is arbitrarily assumed to be zero for scattered field
formulation, but E; for total field formulation. However, for
finite size of the meshes, there can be numerical differences
between solutions for two cases. In our analysis we used
total field formulation. Hence, (12) is valid on the conductor
surface, but for the terminating surface the boundary condition
will be formulated using total field formulation.

As discussed in [2], at each iteration cycle, the field sources
within the mesh domain are found out. These sources are the
currents on the conducting surface. Current distribution over
a particular segment (Ja;, ) is calculated through (13) and

(10)=(11), which is given as

1 dE,
© T jwpe dn
To calculate the normal derivative of the electric field we used

27N
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Fig. 8. Real part of the induced current on the half cylinder conductor; outer
boundary 0.173) away.

both first order and second order differences. As expected,
the computational accuracy is increased using second order
differences. Now replacing (27) in (26) we get

Z/m ( ) HP (klr —v'))dl'. (28)

The total field at the mesh termination is now given by

E% = E"b——Z/ ( ) HP (klr =) dl' (29)
Al, Al,

where superscript ob denotes the terminating surface or the
outside boundary. Hence, the boundary condition on the ter-
minating surface is “exact.”

The iteration continues with a new set of electric fields at the
terminating surface replaced by the old values in vector [®,].
If the electric field on the terminating surface at kth iteration
is denoted by [EX], then the electric field at the terminating
surface at (k + 1)th iteration is given by

[EEH] — [E5] + o{[EST™] - [ER]}- (30)

An under-relaxation factor, «, of 0.1-1.0 is chosen to get
convergence for the nodes residing on the outside boundary

scat
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Fig. 9. Imaginary part of the induced current on the half cylinder conductor.

or the terminating surface. The iterative procedure is stopped
when the electric field at the terminating surface attains some
specified error criteria, hence, the boundary condition at the
terminating surface is “numerically exact.”

The electric field for free nodes are updated at each iteration
as given by

[E¥TY] — [ES) + B{E}] - [EF)} 31
where [E’;] denotes electric field of free nodes at kth iteration.
For free nodes an over-relaxation factor, 3, of 1-1.9 is
chosen for convergence. This procedure is simple to use, and
convergence is achieved for all the structures that this new
method was applied to.

The proposed method can be regarded as a hybrid of
differential and integral equation techniques because a finite
element approach is applied for the electric field within the
domain, and a boundary condition expressed in terms of an
integral (containing the unknown source distribution under
the integral) is formulated for the terminating surface. If
the terminating surface collapses on the conductor surtface,
a boundary element integral equation approach is obtained
because the quantities to be solved for are only the surface
currents, and they are solved from an integral equation.

III. NUMERICAL RESULTS

Let us consider the case of an elliptic cylinder of major
axis 0.6\ and minor axis 0.52\. A two-layer finite element
mesh for the problem is shown in Fig. 1. There are 80 fixed
nodes—40 of them are on the inside boundary and the other 40
nodes are on the outside boundary or the terminating surface.
Another 40 free nodes are elements of our unknown vector.
In this case we have used total field formulation. The iteration
starts by assuming E, on the outside boundary. The incident
field is a uniform plane wave with ¢ = 0 and unit amplitude
(Eo = 0). Current distribution on a particular segment of
the body is calculated using second-order difference. The real
and imaginary part of the induced current on the conductor is
plotted on Figs. 2 and 3, respectively, along with method of
moments (MOM) [7] values. For MOM, 40 subsections are
chosen on the conducting surfaces. The currents are found out
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for the MOM using pulse basis and point matching testing
procedures. As it is evident, it agrees very well with MOM
values of the induced current.

As a second example consider the case of a square cylinder
of side 1.33). The finite element grid of this problem is
shown in Fig. 4. In this case there are 40 unknowns in the
form of free nodes and 88 fixed nodes on which the fields
are known at each iteration cycle. Forty fixed nodes form
the contour of the conductor on which the tangential electric
field is zero for total field formulation. The iteration starts
assuming F; on the outside boundary which is comprised of
48 fixed nodes. Current distribution on a particular segment of
the body is calculated using second order difference. The real
and imaginary parts of the induced current on the conductor are
plotted on Figs. 5 and 6, respectively, along with MOM values.
Forty subsections are chosen to calculate induced current using
MOM. As before, pulse basis functions and the point matching
testing procedure are used to evaluate the current on the
conductor. The results agree well with MOM values of the
induced current, but the current values at corners are widely
different from the MOM values. This is expected because
of the very inherent nature of FEM where using nodes as
unknowns results in convergence problems. As the field blows
up at the corner, modeling them with a point value is extremely
difficult.

As a last example, consider the case of a half cylinder of
diameter 1.73). The finite element meshing of this structure
is shown in Fig. 7. The incident field in this case comes from
the convex side. In this problem electric field values are found
out for 44 free nodes at each iteration cycle. The tangential
electric field on the scatterer, formed by 40 fixed nodes, is
zero for total field formulation. The terminating surface also
in this case is two layers away from the conductor. As before,
the iteration starts by assuming E; on the outside boundary,
which is comprised of 48 fixed nodes. To calculate the normal
derivative of the electric field, the second-order difference is
used, which gives the current distribution over a particular
segment. The real and imaginary parts of the induced current
on the conductor are plotted on Figs. 8 and 9, respectively,
along with MOM values. Currents are plotted from node 1
in an anti-clockwise sense. Forty subsections are chosen to
calculate the induced current using MOM. As before, pulse
basis functions and the point matching testing procedure are
used to evaluate the current on the conductor. The results agree
well with MOM values of the induced current, but the real part
of the current values at the shadow region of the conductor
is in variance with MOM values. Since the current value is
very low in this region, numerical error is introduced while
differencing two small numbers.

IV. CONCLUSION

A hybrid method is presented for the solution of
Helmbholtz’s equation in two dimensions for open region TM
scattering problems. The results are in reasonable agreement
with the solution of MOM. This method yields a highly
sparse matrix and can be used very effectively in solving
electromagnetic scattering problems for inhomogeneous and
nonlinear media.
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